Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

نویسندگان

  • Stefano Berardi
  • Silvia Steila
چکیده

We produce a first order proof of a famous combinatorial result, Ramsey Theorem for pairs and in two colors. Our goal is to find the minimal classical principle that implies the “miniature” version of Ramsey we may express in Heyting Arithmetic HA. We are going to prove that Ramsey Theorem for pairs with recursive assignments of two colors is equivalent in HA to the sub-classical principle Σ3-LLPO. One possible application of our result could be to use classical realization to give constructive proofs of some combinatorial corollaries of Ramsey; another, a formalization of Ramsey in HA, using a proof assistant. In order to compare Ramsey Theorem with first order classical principles, we express it as a schema in the first order language of arithmetic, instead of using quantification over sets and functions as it is more usual: all sets we deal with are explicitly defined as arithmetical predicates. In particular, we formally define the homogeneous set which is the witness of Ramsey theorem as a ∆3-arithmetical predicate. 1998 ACM Subject Classification F.4.1 Mathematical Logic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey's Theorem for Pairs and $k$ Colors as a Sub-Classical Principle of Arithmetic

The purpose is to study the strength of Ramsey’s Theorem for pairs restricted to recursive assignments of k-many colors, with respect to Intuitionistic Heyting Arithmetic. We prove that for every natural number k ≥ 2, Ramsey’s Theorem for pairs and recursive assignments of k colors is equivalent to the Limited Lesser Principle of Omniscience for Σ 3 formulas over Heyting Arithmetic. Alternative...

متن کامل

Ramsey's Theorem and the Pigeonhole Principle in Intuitionistic Mathematics

At first sight, the argument which F. P. Ramsey gave for (the infinite case of) his famous theorem from 1927, is hopelessly unconstructive. If suitably reformulated, the theorem is true intuitionistically as well as classically: we offer a proof which should convince both the classical and the intuitionistic reader.

متن کامل

Ramsey’s Theorem for pairs in k colors in the hierarchy of classical principles

The purpose of this work is to study, from the viewpoint of first order arithmetic (we have no set variables, the only sets are the arithmetical sets), Ramsey’s Theorem for pairs for a recursive assignment of k-many colors in order to find some principle of classical logic equivalent to it in HA. We proved that it is equivalent in HA to Σ3-LLPO, that is the Limited Lesser Principle of Omniscien...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Equivalence of Intuitionistic Inductive Definitions and Intuitionistic Cyclic Proofs under Arithmetic

A cyclic proof system gives us another way of representing inductive definitions and efficient proof search. In 2011 Brotherston and Simpson conjectured the equivalence between the provability of the classical cyclic proof system and that of the classical system of Martin-Lof’s inductive definitions. This paper studies the conjecture for intuitionistic logic. This paper first points out that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013